Synthetic Utilization of Polynitroaromatic Compounds. 2. Synthesis of 4,6-Dinitro-1,2-benzisothiazol-3-ones and 4,6-Dinitro-1,2-benzisothiazoles from 2-Benzylthio-4,6-dinitrobenzamides

S. G. Zlotin,* P. G. Kislitsin, A. I. Podgursky, A. V. Samet, and V. V. Semenov N.D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Pr., 47 Moscow, 117913, Russia

A. C. Buchanan III and Andrei A. Gakh*

Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6197

gakhaa@ornl.gov

Received March 29, 2000

Cyclization of 2-benzylthio-4,6-dinitrobenzamides to 4,6-dinitro-1,2-benzisothiazol-3-ones was achieved using SO₂Cl₂ in CH₂Cl₂ at room temperature. Alkylation of these heterocycles proceeded in a nonregioselective manner to yield a mixture of corresponding O- and N-alkylated products. Oxidation of 4,6-dinitro-1,2-benzisothiazoles (50% H_2O_2 in AcOH) afforded the corresponding S-oxides and S,S-dioxides, depending on oxidation conditions. Unexpectedly, oxidation of a 3-methoxy derivative resulted in ring opening with the formation of the corresponding sulfamide. Chlorination of these 4,6-dinitro-1,2-benzisothiazol-3-ones (PCl₃–POCl₃) gave the expected 3-chloroisothiazoles.

Introduction

It is known that 1,2-benzisothiazoles and 1,2-benzisothiazol-3-ones, containing a nitro group in the aromatic ring, possess bactericide,¹⁻⁵ fungicide,^{6,7} and nematocide⁸ properties, and can be used as intermediates for azo dyes.^{9,10} These compounds have been synthesized by various methods including amination of 2-(chlorosulfanyl)nitrobenzoyl chlorides^{3,11,12} chlorination of 2-(alkylthio)nitrobenzamides7,13 and 2-(alkylthio)nitrobenzaldoximes,^{4,14} reaction of 2-(alkylthio)nitrobenzaldoximes with polyphosphoric acid,¹⁵ reaction of 2-(alkylsulfinyl)nitrobenzamides with trichloroacetic anhydride^{16,17} or

- (2) Vicini, P.; Mazza, P. Farmaco 1989, 44(5), 511.
- (3) Fischer, R.; Hurni, H. *Arz.-Forshung* **1964**, *14*(12), 1301.
 (4) Kagano, H.; Goda, H.; Yoshida, K.; Yamamoto, M.; Sakaue, S.
- Can. Pat. Appl. CA 2,151,074 (Cl. C07D275/04), 1996; Chem. Abstr. 1996, 124, 317152h.
- (5) Zani, F.; Mingiardi, M. R.; Maggiali, C. A.; Mazza, P. Farmaco **1996**, *51*(11), 707.
- (6) Hagen, H.; Ziegler, H.; Pommer, E. H.; Ammermann, E. Ger. Offen. DE 3,202,298 (C1. C07D275/04), 1983; Chem. Abstr. 1983, 99, 175752t
- (7) Kagano, H.; Itsuda, H.; Sakagami, S. J. P. 07,330,745 [95,330,-745] (C1. C07D275/04), 1995; Chem. Abstr. 1996, 124, 289523j.
- (8) Sutter, M.; Kunz, W. Eur. Pat. Appl. EP 454,621 (Cl. C07D275/ 04) 1991; Chem. Abstr. 1992, 116, 106280v.
- (9) Hagen, H.; Markert, J. Ger. Offen. DE 3,018,108 (Cl. C07D275/ (10) Gruettner-Merten, S.; Grund, C.; Guldner, A.; Hagen, H.;
- Reichelt, H.; Sens, R. Ger. Offen. DE 4,339,270 (C1. C09B29/09), 1995; Chem. Abstr. 1995, 123, 259743t.
- (11) Hagen, H.; Ziegler, H. Ger. Offen. DE 3,150,629 (Cl. C07D275/ 04), 1983; Chem. Abstr. 1983, 99, 175750r.
- (12) Ponci, R.; Gialdi, F.; Baruffini, A. *Farmaco* 1964, *19*(3), 254.
 (13) Kagano, H.; Goda, H.; Sakaue, S. Eur. Pat. Appl. EP 657,438
- (cl. c07)275/04), 1995; *Chem. Abstr.* **1995**, *123*, 313964b. (14) Kagano, H.; Goda, H.; Yamamoto, M.; Sakaue, S.; Toudou, M.
- PTC Int. Appl. WO 96 17,834 (C1. C07D275/04), 1996; *Chem. Abstr.* **1996**, *125*, 142716m.

(15) Rahman, L. K. A.; Scrowston, R. M. J. Chem. Soc., Perkin Trans. 1 1984, (3), 385.

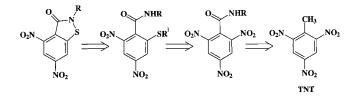
bases,^{16–18} and reaction of nitro-substituted 2-chlorobenzaldehydes with a mixture of sulfur and ammonia.9,10,19 In most cases, only 5- and 7-nitro-1,2-benzisothiazoles and isothiazol-3-ones but not 4- and 6-nitro-isomers can be prepared using these methods.

It is expected that 1,2-benzisothiazoles and 1,2-benzisothiazol-3-ones containing two nitro groups in the aromatic ring would have useful biological activities as well. They also may serve as valuable intermediates for synthesis of other functionalized nitro- and dinitro-1.2benzisothiazoles or isothiazol-3-ones via alkylation, halogenation, oxidation as well as reactions with nucleophilic reagents.

To the best of our knowledge, there is only one literature report of a 1,2-benzisothiazole containing two nitro groups in the aromatic ring. Thus, nitration of 4-chloro-1,2-benzisothiazole gave 4-chloro-5,7-dinitro-1,2benzisothiazole, patented as an intermediate for synthesis of azo dyes.¹⁰ 4,6-Dinitro-1,2-benzisothiazoles and 4,6dinitro-1,2-benzisothiazol-3-ones have not yet been reported.

In our previous paper,²⁰ we proposed to use 2,4,6trinitroaromatic compounds as possible starting materials for synthesis of various aromatic and heterocyclic intermediates. In the case of benzisothiazoles, a possible synthetic strategy includes transformation of readily available 2,4,6-trinitrotoluene (TNT) to 2,4,6-trinitrobenzamides, followed by substitution of an o-nitro group by

⁽¹⁾ Clarke, K.; Gleadhill, B.; Scrowston, R. M. J. Chem. Res. Synop. 1979, 12, 395.

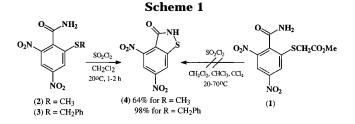

⁽¹⁶⁾ Wright, S. W.; Abelman, M. M.; Bostrom, L. L.; Corbett, R. L. Tetrahedron Lett. 1992, 33(2), 153.

⁽¹⁷⁾ Wright, S. W.; Petraitis, J.; Abelman, M. M.; Batt, D. G.; Bostrom, L. L.; Corbett, R. L.; Decicco, C. P.; Di Meo, S. V.; Freimark, B.; Giannaras, J. V.; Green, A. M.; Jetter, J. M.; Nelson, D. J.; Orwat, M. J.; Pinto, D. J.; Pratta, M. A.; Sherk, S. R.; Williams, J. M.; Magolda, R. L.; Arner, E. S. J. Med. Chem. 1994, 37(19), 3071.
 (18) Bamfield, P.; Greenwood, D.; Lotey, H.; Stirling, C. J. M. J.

Chem. Soc., Perkin Trans. 2 1988, (5), 691

⁽¹⁹⁾ Markert, J.; Hagen, H. Lieb. Ann. Chem. 1980, (5), 768.

an alkylthio group, and cyclization to the desired 4,6dinitro-1,2-benzisothiazol-3-ones by chlorinating agents. The retro-synthetic analysis is presented below.

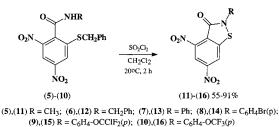


Conversion of TNT to 2,4,6-trinitrobenzoic acid and its amides was described previously, as well as reaction of these amides with alkyl- and arylmercaptans which produced 2-(alkylthio)-4,6-dinitrobenzamides.²⁰ In this paper, we will describe cyclization of the 2-(alkylthio)-4,6-dinitrobenzamides leading to the desired 4,6-dinitrol,2-benzisothiazol-3-ones, and some further reactions of these compounds with electrophilic reagents.

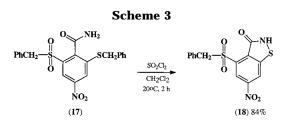
Results and Discussion

It is known that *S*-aryl-*S*-benzylsulfides easily react with Cl_2 or SO_2Cl_2 to give arylthiochlorides—possible intermediates for synthesis of 1,2-benzisothiazoles.²¹ Examples include conversion of the *N*-phenylamide of 3-(benzylthio)pyridine-2-carboxylic acid to 2-phenylpyridoisothiazol-3-one by reaction with SO_2Cl_2 .¹⁷ In addition, synthesis of 1,2-benzisothiazole-3-ones by reactions of 2-(alkylthio)-N-arylbenzamides (alkyl = C_1-C_4) with Cl_2 or SO_2Cl_2 have been reported by Japanese authors in two recent patents.^{7,13}

To determine the effect of thioalkyl groups in 2-(alkylthio)-4,6-dinitrobenzamides on the yield of the desired 4,6-dinitro-l,2-benzisothiazol-3-ones, we have investigated reactions of 2-(alkylthio)-4,6-dinitrobenzamides $(1-3)^{20}$ (Scheme 1) with sulfuryl chloride. It appeared that 2-methoxycarbonylmethylthio-4,6-dinitrobenzamide (1) did not react with SO₂Cl₂ in chlorohydrocarbons (CH₂-Cl₂, CHCl₃, CCl₄) at 20–70 °C. On the other hand, treatment of 2-methylthio- and 2-benzylthio-4,6-dinitrobenzamides (2) and (3) with SO₂Cl₂ in CH₂Cl₂ at 15– 20 °C afforded the desired 4,6-dinitro-1,2-benzisothiazol-3-one (4) in 64% and 98% yields, respectively (see also ref 23). Based on these results, we selected 2-benzylthio-4,6-dinitrobenzamides as starting compounds for synthesis of 4,6-dinitro-1,2-benzisothiazol-3-ones.

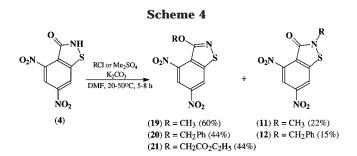


(20) Zlotin, S. G.; Kislitsin, P. G.; Serebryakov, E. A.; Samet, A. V.; Konyushkin, A. L.; Semenov, V. V.; Buchanan, A. C.; Gakh, A. A. J. Org. Chem. 2000, 64, 8430. Previous communication: Zlotin, S. G.; Serebryakov, E. A.; Kislitsin, P. G.; Konyushkin, L. D.; Semenov, V. V.; Buchanan, A. C. III.; Gakh, A. A. Abstract Paper, The 218th ACS National Meeting, New Orleans, 48-Orgn. Part 2, Aug 22, 1999. (21) Hogg, D. R. In Sulfenic acids and their derivatives" in "Com-

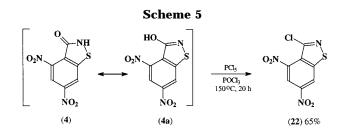

(21) Hogg, D. R. In *Sulfenic acids and their derivatives" in "Comprehensive Organic Chemistry*, Barton, D., Ollis, W. D., Eds.; Pergamon Press Ltd.: New York, 1979; Vol. 3.

We investigated the behavior of a series of N-substituted 2-benzylthio-4,6-dinitrobenzamides (5–10) to explore the scope of the cyclization reaction. Synthesis of the starting benzamides (5–10) was described previously.²⁰ We found that 5–10 reacted smoothly with SO₂-Cl₂ in CH₂Cl₂ at room temperature to afford N–alkyland N-aryl-4,6-dinitro-1,2-benzisothiazol-3-ones (11–16)-in 55–91% yields (Scheme 2).

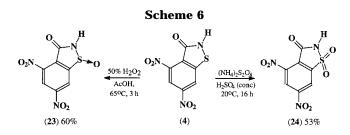
Scheme 2

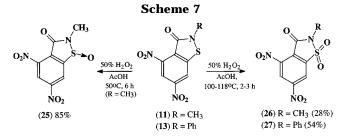


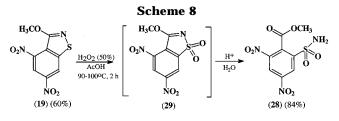
2-Benzylthio-4-nitrobenzamides containing other electron withdrawing groups at the 6- position react similarly. Thus, 2-benzylthio-6-benzylsulfonyl-4-nitrobenzamide $(17)^{20}$ is easily converted to 4-benzylsulfonyl-6-nitrol,2-benzisothiazol-3-one (18) in 84% yield by treatment with sulfuryl chloride at room temperature (Scheme 3). It is noteworthy that the use of pure *o*-(benzylthio)-benzamides in the cyclization reaction is not required. Compounds 3, 5–10, and 17, containing the related *p*-benzylthio isomers,²⁰ could be used without further purification. In these cases, isolation of analytically pure nitro-1,2-benzisothiazol-3-ones (4, 11–16, and 18) is achieved by simple recrystallization from *i*-PrOH or its mixtures with heptane, CHCl₃, or acetone.



It should be noted that benzyl chloride, a byproduct of the cyclization process, can be easily isolated from the reaction mixture by extraction with petroleum ether or hexane. Hence, it can be reused for synthesis of the starting 2-benzylthio-4,6-dinitrobenzamides. This feature improves the potential for developing an industrial process for production of the target heterocycles.


4,6-Dinitro-l,2-benzisothiazol-3-ones (4, 11-16) are found to be useful intermediates in the synthesis of other 1,2-benzisothiazol-3-ones and 1,2-benzisothiazoles bearing diverse substituents in isothiazole and benzene rings. Thus, 4 reacts with dimethyl sulfate and benzyl chloride in DMF in the presence of K₂CO₃ to afford mixtures of 3-alkoxy-4,6-dinitro-1,2-benzisothiazoles (19 and 20) and 2-alkyl-4,6-dinitro-1,2-benzisothiazol-3-ones (11 and 12) in which products of O-alkylation 19 and 20 were the principal components (Scheme 4). Products of O- and N-alkylation were easily separated due to their different solubility in hexane: 19 and 20 are much more soluble than **11** and **12**. Reaction of **4** with ethylchloroacetate under the same conditions afforded only (4,6-dinitro-1,2-benzisothiazol-3-yl)oxyacetic acid ethyl ester (**21**) in 44% yield.


We also found that the carbonyl group in **4** can be replaced with chlorine, probably via tautomer **4a**. Indeed, **4** reacts with a mixture of PCl_5 and $POCl_3$ to give 3-chloro-4,6-dinitro-1,2-benzisothiazole (**22**) in 65% yield (Scheme 5). Prolonged heating (20 h) of the reaction mixture at 150 °C is required for completion of the reaction.


Reaction of **4** with 50% H_2O_2 in glacial acetic acid at 65 °C gave 4,6-dinitro-1,2-benzisothiazol-3-one S-oxide (**23**) in 60% yield. Further oxidation did not take place even if the reaction mixture was heated at 100 °C for several hours. However, we were able to prepare the 4,6-dinitro-1,2-benzisothiazol-3-one *S*,*S*-dioxide (**24**) ("dinitrosaccharine") in 53% yield by reaction of **4** with a stronger oxidizer such as ammonium persulfate in concentrated H_2SO_4 (Scheme 6).

Unlike **4**, 2-methyl-4,6-dinitro-1,2-benzisothiazol-3-one (**11**) reacts with 50% H_2O_2 in glacial acetic acid to afford the S-oxide (**25**) or the S,S-dioxide (**26**), depending on the reaction conditions (Scheme 7). When the reaction was carried out at 50 °C, **25** was formed in 85% yield. On the other hand, 2-methyl-4,6-dinitro-1,2-benzisothiazol-3-one-S,S-dioxide (**26**) was prepared using boiling AcOH (118 °C). 4,6-Dinitro-2-phenyl-1,2-benzisothiazol-3-one (**13**) reacted with 50% H_2O_2 at 100–110 °C to afford the appropriate S,S-dioxide (**27**) in 54% yield.

1,2-Benzisothiazoles are generally much more resistant toward oxidizers than 1,2-benzisothiazol-3-ones.²² We found, however, that 4,6-dinitro-3-methoxy-1,2-benzisothiazole (**19**) reacted with 50% H_2O_2 in AcOH at 100 °C to afford 3,5-dinitro-2-(methoxycarbonyl)benzene-sulfamide (**28**) in 84% yield. The reaction probably involves formation of 4,6-dinitro-3-methoxy-1,2-benzisothiazole-*S*,*S*-dioxide (**29**) followed by a hydrolytic cleavage of the C=N bond in **29** under the reaction conditions (Scheme 8).

Conclusions

As a result of our investigations (see also ref 20), new synthetic routes for transformation of polynitroaromatic compounds to 4,6-dinitro-1,2-benzisothiazoles and 4,6-dinitro-1,2-benzisothiazol-3-ones have been developed. The overall strategy includes conversion of TNT to 2,4,6-trinitrobenzamides, nucleophilic substitution of an *o*-nitro group by benzylthio group, cyclization of 2-benzylthio-4,6-dinitrobenzamides to 4,6-dinitro-1,2-benzisothiazol-3-ones and subsequent derivatization (alkylation, chlorination, oxidation). Seventeen new heterocyclic compounds have been synthesized.

Experimental Section

General Methods. Compounds **1–3** were synthesized according to known procedures.²⁰

Caution: Polynitroaromatic compounds are potential explosives. Proper protective measures (shields, glasses) should

⁽²²⁾ Davis, M. Benzisothiazoles. In *Adv. Heterocycl. Chem.*; Katritzky, A. R., Boulton, A. J., Eds.; Academic Press: New York, London, 1972; Vol. 3, p 43.

⁽²³⁾ To the best of our knowledge the mechanism of the formation of 1,2-benzisothiazolones in the reaction of o-alkylsulfanylbenzamides with halogenating agents has not been investigated yet. It is well established that S-aryl-S-benzylsulfides easily react with chlorinating agents with C-S bond cleavage to afford arylsulfanyl chlorides.²¹ It is also known that 2-bromosulfanylbenzamide, that probably forms in the reaction of S_sS -bis[2-(aminocarbonyl)phenyl] disulfide with bro-mine, undergoes termal cyclization to 1,2-benzisothiazolone (A. Reissert, E. Manns, *Chem. Ber.* **1928**, *61*, 1308). These facts as well as literature data^{7,13,17} (one step conversion of 2-alkylsulfanylarylamides to isothiazolones under the action of Cl₂ or SO₂Cl₂) suggest that the reaction includes transformation of 2-alkylsulfanyl-benzamides to 2-chlorosulfanylbenzamide followed by intramolecular cyclization of the latter to the appropriate fused isothiazolone. A likely mechanism for reaction of 2-benzylthio-nitrobenzamides with SO₂Cl₂ involves substitution of the benzyl group by chlorine, followed by intramolecular cyclization with the formation of the N-S bond. This mechanism could explain why 2-methoxycarbonylmethylthio-4,6-dinitrobenzamide (1) failed to react with SO₂Cl₂ compared to benzylthio derivative 3 since benzyl group is a better leaving group.

be used during experiments with these materials. Scale-up of the reported reactions requires appropriate chemical hazards testing.

4,6-Dinitro-1,2-benzisothiazol-3-one (4). Method A. To a stirred suspension of 2-methylthio-4,6-dinitrobenzamide (2)²⁰ (0.50 g, 1.9 mmol) in absolute CH₂Cl₂ (10 mL) was added SO₂-Cl₂ (0.30 mL, 0.50 g, 3.7 mmol). The reaction mixture, which turned yellow immediately after the addition, was stirred at 15–20 °C for 2 h. A precipitate was filtered off, washed with CH₂Cl₂ (2 × 3 mL), hexane (2 × 3 mL), and then air-dried to afford 0.30 g (64%) of 4, bright-yellow crystals: dec ~270 °C; R_r 0.65 (CHCl₃-acetone 5:1); ¹H NMR (DMSO- d_6) δ 8.69 (s, 1H), 9.35 (s, 1H), very broad NH signal was not detected. Anal. Calcd for C₇H₃N₃O₅S: C, 34.86; H, 1.25; N, 17.42; S, 13.29. Found: C, 35.08; H, 1.34; N, 17.61; S, 13.05.

Method B. To a stirred suspension of 2-benzylthio-4,6dinitrobenzamide (**3**)²⁰ (2.6 g, 7.8 mmol) in absolute CH₂Cl₂ (25 mL) was added SO₂Cl₂ (0.75 mL, 1.3 g, 9.3 mmol) at 20 °C. The mixture turned bright yellow immediately. It was stirred for 1 h and diluted with hexane (15 mL). The precipitate was filtered, washed with hexane (2 × 5 mL), and air-dried to yield 1.84 g (98%) of **4**. According to TLC and ¹H NMR spectra the compound was identical to **4** prepared by method A.

2-Substituted 4,6-Dinitro-1,2-benzisothiazol-3-ones 11– 16. General Procedure. To a stirred suspension of Nsubstituted 2-benzylthio-4,6-dinitrobenzamide **5–10** containing ~10% of the related 4-(benzylthio)derivative (**5a–10a**)²⁰ (5.8 mmol) in absolute CH₂Cl₂ (30 mL) was added SO₂Cl₂ (0.50 mL, 0.83 g, 6.17 mmol). The reaction mixture was stirred for 2 h at 20 °C during which period a clear brown-yellow solution formed. The solvent was evaporated in vacuo, and hexane (15 mL) was added to the solid residue. The precipitate was filtered, washed with hexane (2 × 5 mL), and air-dried. Recrystallization of the solid from *i*-PrOH (or its mixtures with acetone or heptane) afforded analytically pure 2-substituted 4,6-dinitro-1,2-benzisothiazol-3-one (**11–16**).

2-Methyl-4,6-dinitro-1,2-benzisothiazole-3-one (11): yellow crystals; 0.95 g (64%); mp 233–236 °C (*i*-PrOH– acetone); R_f 0.06 (CCl₄–acetone 4:1); ¹H NMR (DMSO- d_6): δ 3.42 (s, 3H), 8.55 (s, 1H), 9.25 (s, 1H). Anal. Calcd for C₈H₅N₃O₅S: C, 37.65; H, 1.97; N, 16.47; S, 12.56. Found: C, 37.82; H, 2.06; N, 16.29; S, 12.31.

2-Benzyl-4,6-dinitro-1,2-benzisothiazol-3-one (12): yellow crystals; 1.74 g (91%); mp 172–175 °C (*i*-PrOH–CHCl₃); R_{f} 0.28 (CCl₄–acetone 4:1); ¹H NMR (DMSO- d_{6}) δ 5.08 (s, 2H), 7.40 (br.s, 5H), 8.68 (s, 1H), 9.20 (s, 1H). Anal. Calcd for C₁₄H₉N₃O₅S: C, 50.76; H, 2.74; N, 12.68; S, 9.68. Found: C, 51.02; H, 2.85; N, 12.50; S, 9.37.

4,6-Dinitro-2-phenyl-1,2-benzisothiazol-3-one (13): yellow crystals; 1.55 g (84%); mp 229–231 °C (*i*-PrOH– acetone); R_f 0.24 (CCl₄–acetone 4:1); ¹H NMR (DMSO- d_6) δ 7.45 (t, 1H, J = 7.5 Hz), 7.58 (t, J = 7.5 Hz, 2H), 7.68 (d, J = 7.5 Hz, 2H), 8.77 (s, 1H), 9.29 (s, 1H). Anal. Calcd for C₁₃H₇N₃O₅S: C, 49.21; H, 2.22; N, 13.24; S, 10.10. Found: C, 49.02; H, 2.14; N, 13.41; S, 9.89.

2-(*p*-Bromophenyl)-4,6-dinitro-1,2-benzisothiazol-3one (14): bright yellow crystals; 1.26 g (55%); mp 196–199 °C (*i*-PrOH–acetone); R_t 0.72 (benzene–acetone 4:1); ¹H NMR (DMSO- d_6): δ 7.65 (d, J = 7.5 Hz, 2H), 7.71 (d, J = 7.5 Hz, 2H), 8.65 (s, 1H), 9.30 (s, 1H). Anal. Calcd for C₁₃H₆N₃BrO₅S: C, 39.41; H, 1.53; N, 10.61; Br, 20.17; S, 8.09. Found: C, 39.18; H, 1.41; N, 10.85; Br, 19.79; S, 7.90.

2-[4'-(Chlorodifluoromethoxy)phenyl]-4,6-dinitro-1,2benzisothiazol-3-one (15): yellow crystals; 1.83 g (76%); mp 128–131 °C (*i*-PrOH–heptane); R_f 0.70 (benzene–acetone 4:1); ¹H NMR (DMSO- d_6) δ 7.48 (d, J = 8.5 Hz, 2H), 7.83 (d, J = 8.5 Hz, 2H), 8.64 (s, 1H), 9.33 (s, 1H). Anal. Calcd for C₁₄H₆N₃-ClF₂O₆S: C, 40.25; H, 1.45; N, 10.06; S, 7.67. Found: C, 40.03; H, 1.39; N, 10.28; S, 7.42.

2-(4'-Trifluoromethoxyphenyl)-4,6-dinitro-1,2-benzisothiazol-3-one (16): yellow crystals; 1.69 g (76%); mp 150– 153 °C (*i*-PrOH-heptane); R_f 0.80 (benzene-acetone 4:1); ¹H NMR (DMSO- d_6) δ 7.58 (d, J = 8.5 Hz, 2H), 7.83 (d, J =8.5 Hz, 2H), 8.77 (s, 1H), 9.29 (s, 1H). Anal. Calcd for $C_{14}H_6N_3F_3O_6S:\ C,\ 41.91;\ H,\ 1.51;\ N,\ 10.47;\ S,\ 7.99.$ Found: C, 41.69; H, 1.45; N, 10.71; S, 7.70.

4-Benzylsulfonyl-6-nitro-1,2-benzisothiazol-3-one (18). To a solution of the mixture of 2-benzylsulfonyl-6-benzylthio-4-nitrobenzamide (**17**) and 2-benzylsulfonyl-4-benzylthio-6-nitrobenzamide (**17a**) (1:1), prepared as described previously²⁰ (1.8 g, 4.1 mmol), in CH₂Cl₂ (20 mL) was added SO₂Cl₂ (0.70 g, 0.40 mL, 5.2 mmol). The reaction mixture was stirred at 20 °C for 2 h. A yellow precipitate formed that was filtered, washed successively with CH₂Cl₂ (2 × 5 mL), hexane (2 × 5 mL), and air-dried to afford 0.60 g (84% calculated based on **17**) of **18**: mp 271–275 °C; *R*₇ 0.32 (benzene–acetone 4:1); ¹H NMR (DMSO-*d*₆) δ 5.12 (s, 2H), 7.30 (br.s, 5H), 8.47 (s, 1H), 9.40 (s, 1H), very broad NH signal was not detected. Anal. Calcd for C₁₄H₁₀N₂O₅S₂: C, 47.99; H, 2.88; N, 8.00; S, 18.30. Found: C, 48.25; H, 3.01; N, 8.23; S, 18.08.

3-Methoxy-4,6-dinitro-1,2-benzisothiazole (19). To a solution of 4,6-dinitro-1,2-benzisothiazol-3-one (**4**) (1.0 g, 4.2 mmol) in absolute DMF (15 mL) were added successively with stirring K₂CO₃ (0.60 g, 4.4 mmol) and dimethylsulfate (0.40 mL, 0.53 g, 4.2 mmol). The reaction mixture was stirred at 20 °C for 6 h, and then poured into water (100 mL). The water suspension was neutralized to pH~6-7 using 10% HCl. A precipitate was filtered, washed with water (2×10 mL), and dried in air. The solid was extracted with boiling heptane (5×10 mL). On cooling, a precipitate formed that was collected by filtration to yield 0.64 g (60%) of **19**: mp 135-138 °C (acetone-*i*-PrOH); *R_i*0.53 (CCl₄-acetone 4:1); ¹H NMR (DMSO- $d_{\rm el} \delta 4.15$ (s, 3H), 8.65 (s, 1H), 9.43 (s, 1H). Anal. Calcd for C₈H₅N₃O₅S: C, 37.65; H, 1.97; N, 16.47; S, 12.56. Found: C, 37.84; H, 2.00; N, 16.32; S, 12.39.

A residue insoluble in boiling heptane was recrystallized from $CHCl_3$ -*i*-PrOH mixture to yield 0.24 g (22%) of 2-methyl-4,6-dinitro-1,2-benzisothiazol-3-one (**11**), yellow crystals: mp 231–235 °C. According to TLC and NMR ¹H spectra, the compound was identical to **11** prepared by reaction of *N*-methyl-2-benzylthio-4,6-dinitrobenzamide (**5**) with SO₂Cl₂.

3-Benzyloxy-4,6-dinitro-1,2-benzisothiazole (20). To a solution of 4,6-dinitro-1,2-benzoisothiazol-3-one (4) (1.0 g, 4.2 mmol) in absolute DMF (15 mL) were added with stirring K2- CO_3 (0.70 g, 5.1 mmol) and then benzyl chloride (0.60 mL, 0.66 g, 5.2 mmol). The reaction mixture was stirred at 45–50 °C for 5 h and poured into water (100 mL). The organic materials were extracted with ether (3 \times 3 mL), and the combined organic layers were washed with water (2 mL) and then dried over anhydrous MgSO₄. The solvent was evaporated, and the residue was extracted with boiling hexane (5 \times 10 mL). The hexane solution was cooled, and the precipitate was collected by filtration to yield 0.60 g (44%) of 20: mp 135-136 °C; $R_f 0.75$ (CHCl₃); ¹H NMR (DMSO- d_6) δ 5.60 (s, 2H), 7.35-7.50 (m, 5H), 8.80 (s, 1H), 9.45 (s, 1H). Anal. Calcd for C14H9N3O5S: C, 50.76; H, 2.74; N, 12.68; S, 9.68. Found: C, 50.91; H, 2.80; N, 12.83; S, 9.44.

A residue insoluble in boiling hexane was recrystallized from a CHCl₃ – *i*-PrOH mixture to yield 0.20 g (15%) of 2-benzyl-4,6-dinitro-1,2-benzisothiazol-3-one (**12**), yellow crystals: mp 172–175 °C. According to TLC and ¹H NMR, the compound was identical to **12** prepared by reaction of *N*-benzyl-2benzylthio-4,6-dinitrobenzamide (**6**) with SO₂Cl₂.

(4,6-Dinitro-1,2-benzisothiazol-3-yl)oxyacetic Acid Ethyl Ester (21). A mixture of 4,6-dinitro-1,2-benzisothiazol-3one (4) (1.0 g, 4.2 mmol), ethyl chloroacetate (0.50 mL, 0.58 g, 4.7 mmol), K₂CO₃ (0.58 g, 4.2 mmol), and dry DMF (15 mL) was stirred at 40–45 °C for 8 h and then kept at 12 °C overnight. The mixture was poured into water (100 mL) and extracted with ether (5 × 30 mL). The combined ether extracts were dried over anhydrous MgSO₄, the solvent was evaporated in vacuo, and the residue was extracted with boiling hexane (5 × 20 mL). A precipitate formed on cooling, which was filtered, washed with hexane, and air-dried to afford 0.60 g (44%) of **21**: yellow crystals; mp 117–120 °C; R_{t} 0.42 (benzene); ¹H NMR (DMSO- d_{6}) δ 1.25 (t, J = 7.0 Hz, 3H), 4.20 (q, J = 7.0 Hz, 2H), 5.10 (s, 2H), 8.70 (s, 1H), 9.47 (s, 1H). Anal. Calcd for C₁₁H₉N₃O₇S: C, 40.37; H, 2.77; N, 12.84; S, 9.80. Found: C, 40.56; H, 2.84; N, 13.01; S, 9.67.

3-Chloro-4,6-dinitro-1,2-benzisothiazole (22). A mixture of 4,6-dinitro-1,2-benzisothiazol-3-one (4) (1.0 g, 4.2 mmol), PCl₅ (5.0 g, 24 mmol), and POCl₃ (1 mL) was heated at 150 °C for 20 h. Excess quantities of PCl₅ and POCl₃ were destroyed by addition of ice (~100 g). Organic materials were extracted with CHCl₃ (2 \times 50 mL). The combined organic extracts were washed with water (2 \times 20 mL), dried over anhydrous MgSO₄, and filtered. Evaporation of the solvent and crystallization of the residue from *i*-PrOH afforded 0.70 g (65%) of **22**: mp 127 129 °C; $R_f 0.41$ (CCl₄-acetone 4:1); ¹H NMR (DMSO- d_6) δ 8.94 (s, 1H), 9.62 (s, 1H). Anal. Calcd for C₇H₂N₃ClO₄S: C, 32.38; H, 0.78; N, 16.19; C1, 13.66; S, 12.35. Found: C, 32.17; H, 0.82; N, 15.99; Cl, 13.84; S, 12.17. After the submission of the manuscript a compound described as 3-chloro-4,6-dinitrobenzo[d]isothiazole (from 2,4,6-trinitrobenzonitrile) was reported elsewhere (Dalinger, I. L.; Cherkasova, T. I.; Khutoretskii, V. M.; Shevelev, S. A. Mendeleev Comm. 2000, 72). However, mp and ¹H NMR of this compound are significantly different compared to our data.

4,6-Dinitro-1,2-benzisothiazol-3-one *S***-Oxide (23).** To a stirred suspension of 4,6-dinitro-1,2-benzisothiazol-3-one (4) (0.20 g, 0.83 mmol) in glacial acetic acid (1 mL) was added 50% H₂O₂ (1 mL). The reaction mixture was stirred at 65 °C for 3 h. After cooling, a precipitate was filtered, washed with water, and air-dried to yield 0.13 g (60%) of 23: pale-yellow solid; mp 262–263 °C; R_f 0.26 (CHCl₃–acetone 5:1); ¹H NMR (DMSO- d_6) δ 9.13 (s, 1H), 9.35 (s, 1H); MS (m/z, I) 257 (M⁺, 10), 211 (M⁺ – NO₂, 13), 194 (M⁺ – HNSO, 38), 148 (M⁺ – HNSO – NO₂, 18), 74 (S–N=C=O, 100). Anal. Calcd for C₇H₃N₃O₆S: C, 32.69; H, 1.18; N, 16.34; S, 12.47. Found: C, 32.84; H, 1.13; N, 16.18; S, 12.30.

4,6-Dinitro-1,2-benzisothiazol-3-one *S,S*-Dioxide (24). A suspension of 4,6-dinitro-1,2-benzisothiazol-3-one (4) (0.15 g, 0.62 mmol) and $(NH_4)_2S_2O_8$ (0.57 g, 2.5 mmol) in 95% H₂-SO₄ (2 mL) was stirred at 20 °C for 16 h. The reaction mixture was poured on ice (~20 g) and extracted with ethyl acetate (5 × 5 mL), and the combined organic layers were washed with water (3 × 2 mL) and dried over anhydrous MgSO₄. Evaporation of the solvent and recrystallization of the residue from an *i*-PrOH-hexane mixture afforded 0.09 g (53%) of **24**: colorless crystals; mp 267–270 °C dec; *R_f*0.13 (CHCl₃–acetone 5:1); ¹H (DMSO-*d*₆) δ 8.70 (s, 1H), 8.92 (s, 1H); MS (*m*/*z*, I) 273 (M⁺, 20), 209 (M⁺ – SO₂, 28), 74 (S–N=C=O, 100). Anal. Calcd for C₇H₃N₃O₇S: C, 30.78; H, 1.11; N, 15.38; S, 11.74. Found: C, 30.59; H, 1.06; N, 15.52; S, 11.57.

2-Methyl-4,6-dinitro-1,2-benzisothiazol-3-one *S***-Oxide** (**25**). To a stirred suspension of 2-methyl-4,6-dinitro-1,2benzisothiazole-3-one (**11**) (0.43 g, 1.69 mmol) in glacial acetic acid (9 mL) was added 50% H₂O₂ (0.6 mL). The reaction mixture was stirred at 50 °C for 6 h. After cooling, a precipitate was filtered, washed with AcOH (2 × 2 mL), water (2 mL), dried in the air, and recrystallized from an acetone–*i*-PrOH mixture to yield 0.39 g (85%) of **25**: pale yellow solid; mp 205– 206 °C; R_f 0.09 (CCl₄–acetone 4:1); ¹H NMR (DMSO- d_6) δ 3.32 (s, 3H), 9.18 (s, 1H), 9.41 (s, 1H); MS (m/z, I) 271 (M⁺, 24), 194 (M⁺ – CH₃–N=S=O, 100), 148 (M⁺ – CH₃N=S=O – NO₂, 31), 120 (M⁺ – CH₃N=S=O – NO₂ –CO, 50); IR spectra (ν , cm⁻¹) 3090, 3000, 2940, 2890 (CH), 1705 (C=O), 1610, 1545 (NO₂), 1360 (NO₂), 1320, 1140 (S–O). Anal. Calcd for C₈H₅N₃O₆S: C, 35.43; H, 1.86; N, 15.49; S, 11.82. Found: C, 35.60; H, 1.94; N, 15.63; S, 11.62.

2-Methyl-4,6-dinitro-1,2-benzisothiazol-3-one *S,S*-Dioxide (26). A mixture of 2-methyl-4,6-dinitro-1,2-benzisothiazol-3-one (11) (0.47 g, 1.8 mmol), 50% H_2O_2 (1.0 mL), and glacial acetic acid (6 mL) was refluxed for 3 h. The solvent was evaporated *in vacuo*, water (5 mL) was added to a residue, a precipitate was filtered and washed with water (2 mL), dried in the air, and recrystallized from acetone–*i*-PrOH mixture to yield 0.15 g (28%) of **26**: colorless solid; mp 240–243 °C; R_f 0.28 (CCl₄–acetone 4:1); ¹H NMR (DMSO- d_6) δ 3.25 (s, 3H), 9.22 (s, 1H), 9.50 (s, 1H). Anal. Calcd for C₈H₅N₃O₇S: C, 33.46; H, 1.75; N, 14.63; S, 11.16. Found: C, 33.68; H, 1.83; N, 14.48; S, 10.97.

4,6-Dinitro-2-phenyl-1,2-benzisothiazol-3-one *S,S*-Dioxide (27). A mixture of 4,6-dinitro-2-phenyl-1,2-benzisothiazol-3-one (13) (0.50 g, 1.6 mmol), 50% H_2O_2 (2.0 mL) and glacial AcOH (10 mL) was heated at 100 °C for 2 h. The starting compound (13) was dissolved completely followed by formation of a colorless precipitate. The reaction mixture was cooled to 20 °C for 12 h. The resulting precipitate was filtered, washed with water (2 × 5 mL), and air-dried to yield 0.30 g (54%) of 27: dec 250 °C; R_f 0.41(benzene); ¹H NMR (DMSO- d_6) δ 7.60 (m, 2H), 7.68 (m, 3H), 9.35 (s, 1H), 9.68 (s, 1H); MS (m/z, I) 349 (M^+ , 42), 119 (PhNCO, 35), 91 (PhN, 100), 74 (C_6H_2 , 93), 64 (SO₂, 66). Anal. Calcd for C₁₃H₇N₃O₇S: C, 44.70; H, 2.02; N, 12.03; S, 9.18. Found: C, 44.89; H, 1.97; N, 11.92; S, 8.98.

3,5-Dinitro-2-(methoxycarbonyl)benzenesulfamide (28). A mixture of 3-methoxy-4,6-dinitro-1,2-benzisothiazole (**19**) (0.20 g, 0.80 mmol), 50% H_2O_2 (2.0 mL), and glacial acetic acid (10 mL) was heated at 90–100 °C for 2 h. The solvent was evaporated in vacuo, water (3 mL) was added to the residue, and the precipitate was filtered, washed with water (2×5 mL), and air-dried to yield 0.20 g (84%) of **28**: mp 170–174 °C; ¹H NMR (DMSO- d_6) δ 3.96 (s, 3H), 8.00 (s, 2H), 9.00 (s, 1H); MS (m/z, I) 305 (M⁺, 3), 289 (M⁺ – O, 17), 275 (M⁺ – O – CH₂, 21), 274 (M⁺ – O – NH, 100), 228 (M⁺ – O – NH – NO₂, 26). Anal. Calcd for C₈H₇N₃O₈S: C, 31.48; H, 2.31; N, 13.77; S, 10.50. Found: C, 31.71; H, 2.39; N, 13.63; S, 10.35.

Acknowledgment. The research was sponsored by the IPP program, U.S. Department of Energy under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC.

JO000480C